

38

MODERN TRENDS IN WEB DEVELOPMENT:
HOW TECHNOLOGIES AND APPROACHES
TO WEBSITE CREATION ARE CHANGING

Melnytskyi Ihor,
Software developer

Odessa, Ukraine

E-mail: melnitskiy.i.i@gmail.com

Abstract. Web development has changed significantly over the past 10
years due to advances in technology, changing user expectations, and the need for
increased productivity. This article examines key trends such as the shift to serverless
architecture, the use of frameworks to simplify development, static site generation,
and the rise of web performance. It analyzes the technologies and approaches that have
changed the process of creating websites, as well as their impact on the industry.
Particular attention is paid to how these changes have affected the developer
workflow, what new opportunities they have opened up, and what challenges they
have posed for web development professionals. The article also provides a graph
illustrating the growth of new technologies such as WebAssembly compared to
traditional approaches.

Key words: web development trends, modern web development, JavaScr ipt
frameworks, WebAssembly, JAMstack, web performance optimization.

Introduction
Over the past decade, website development has evolved from a relatively simple

process of coding and markup into a complex multidisciplinary task that requires
taking into account many factors: performance, security, accessibility, and adaptability.
The development of technologies such as JavaScript frameworks, serverless
architecture, and tools for generating static sites has significantly simplified
development, but at the same time has increased the requirements for the knowledge
and skills of developers. Modern web applications must not only be functional, but
also fast, secure, and convenient for users. This has led to the emergence of new
approaches to development that have become the standard in the industry. In this
article, we will consider how these changes have affected the process of creating
websites, which technologies have become key, and what trends determine the future
of web development. We will also analyze how new technologies such as
WebAssembly compare to traditional approaches and present a graph illustrating their
growth.

SCIENCE TIME

1. Key Technologies That Have Changed Web Development in the Last 10
Years

1.1 JavaScript Frameworks and Libraries
The emergence and popularity of frameworks such as React, Angular, and

Vue.js have dramatically changed the way we build web applications. These tools have
enabled developers to create dynamic, interactive interfaces with minimal effort. The
component-based approach used in these frameworks has simplified code reuse and
improved project maintainability. For example, React, with its virtual DOM and
unidirectional data flow, has become the standard for building complex user interfaces.
Angular, on the other hand, offers a full-fledged framework with built-in solutions for
routing, state management, and dependency injection. Vue.js, in turn, has attracted
attention for its simplicity and flexibility, which has made it popular among developers
looking for a lightweight solution for their projects. These frameworks not only
simplified development, but also set new standards for creating modern web
applications.

1.2 Node.js and Full-Stack JavaScript
Node.js was a revolutionary technology that allowed JavaScript to be used on

the server side. This led to the emergence of full-stack development, where one
programming language is used for both the client and server parts of the application.
This simplified the development process and lowered the entry barrier for new
developers. Node.js also contributed to the development of the npm (Node Package
Manager) ecosystem, which became the largest repository of libraries and tools for
JavaScript. Thanks to this, developers got access to a huge number of ready-made
solutions, which significantly accelerated the development process. In addition,
Node.js became the basis for many modern technologies, such as server-side rendering
(SSR) and serverless architecture, which we will discuss below.

1.3 WebAssembly
WebAssembly (Wasm) opened up new possibilities for web development,

allowing high-performance computing right in the browser. This is especially useful
for data-intensive applications such as games, video editors, and CAD systems.
WebAssembly allows code written in languages such as C, C++, and Rust to be
compiled into a binary format that can be executed in the browser with near-native
performance. This makes it ideal for tasks that were previously impossible or highly
inefficient in the browser. For example, projects such as Figma and AutoCAD use
WebAssembly to provide high performance for their web versions. The technology
continues to evolve and is likely to become even more important in the future,
especially as interest in computationally intensive web applications grows.

2. Architectures That Simplify Website Development
2.1 Microservices Architecture
Microservices have replaced monolithic architectures by allowing applications

to be broken down into small, independent components. This has made it easier to
scale, test, and maintain large projects. Microservices architecture allows development
teams to work on individual parts of an application independently, which speeds up the
development process and the introduction of new features. For example, large

SCIENCE TIME

39

companies like Netflix and Amazon use microservices to manage their complex
systems. However, this architecture also requires careful planning and management, as
it can lead to increased complexity in configuring and monitoring the system.
However, for large projects, the benefits of microservices outweigh their drawbacks,
making this architecture a popular choice for modern web applications.

2.2 Serverless Architecture
Serverless architecture, introduced by platforms like AWS Lambda, Google

Cloud Functions, and Azure Functions, has freed developers from the need to manage
servers. This has allowed them to focus on writing code, reducing development time
and operational costs. Serverless architecture is based on the concept of functions as a
service (FaaS), where code is executed only when needed and automatically scales
depending on the load. This makes it ideal for applications with variable load, such as
APIs, data processing, and task automation. For example, startups and small
companies often use serverless to quickly launch their products without having to
invest in infrastructure. However, serverless also has its limitations, such as cold start
of functions and difficulty in debugging, which requires new skills and approaches
from developers.

2.3 JAMstack
JAMstack (JavaScript, APIs, Markup) is an architecture based on generating

static sites and using APIs for dynamic functions. It provides high performance,
security, and scalability, which makes it popular for modern web projects. JAMstack
allows developers to create sites that load instantly, as all pages are pre-generated and
served as static files. APIs are used for dynamic functions, such as contact forms or
search, which allows maintaining high performance. For example, companies like
Smashing Magazine and Nike have switched to JAMstack for their websites, which
has allowed them to significantly improve loading speeds and user experience. This
architecture also simplifies the deployment process, as static files can be easily hosted
on a CDN (Content Delivery Network), which ensures global availability and high-
speed content delivery.

3. Simplify development with frameworks
Frameworks like Next.js, Gatsby, and Nuxt.js have made the process of building

web applications much easier. They provide out-of-the-box solutions for routing,
performance optimization, and SEO, allowing developers to focus on business logic.
For example, Next.js supports both server-side rendering (SSR) and static generation
(SSG), making it a versatile tool for building high-performance applications. SSR
allows you to render pages on the server, which improves SEO and load times, while
SSG allows you to generate static pages that can be deployed to a CDN for maximum
performance. Gatsby, on the other hand, specializes in generating static sites and offers
powerful data tools like GraphQL. Nuxt.js, inspired by Next.js, brings similar
capabilities to the Vue.js ecosystem. These frameworks not only simplify
development, but also set new standards for creating modern web applications, making
them more productive and user-friendly.

SCIENCE TIME

40

4. Static Site Generation
Static sites are experiencing a renaissance thanks to tools like Hugo, Jekyll, and

Gatsby. These generators allow you to create fast, secure, and easily scalable sites.
Static sites are especially popular for blogs, documentation, and marketing pages
where loading speed and ease of deployment are important. For example, Hugo,
written in Go, is known for its fast page generation speed, making it an ideal choice
for large projects with a lot of content. Jekyll, integrated with GitHub Pages, has
become a popular tool for creating blogs and personal sites due to its simplicity and
flexibility. Gatsby, as mentioned, offers powerful tools for working with data and
integrating with various sources, such as CMS and APIs. Not only do these static site
generators simplify the development process, but they also provide high performance
and security, making them a popular choice for modern web projects.

5. Web Performance Growth
Performance has become one of the key success factors for web projects.

Modern tools like Lighthouse, Web Vitals, and PageSpeed Insights help developers
optimize their applications. Technologies like lazy loading, caching, and resource
compression have become the standard for improving user experience. For example,
lazy loading allows images and other resources to be loaded only when they are
needed, which reduces the initial page load time. Caching, on the other hand, allows
frequently used resources to be stored on the user’s device, which reduces the number
of requests to the server and speeds up page loading on repeat visits. Resource
compression, such as minifying CSS and JavaScript, also plays an important role in
improving performance. These technologies, along with modern standards like
HTTP/2 and HTTP/3, allow you to create fast and responsive web applications, which
is becoming critical in the face of growing user expectations.

6. New Technologies Usage Growth Chart
The chart below compares the growth of new technologies such as

WebAssembly, serverless architecture, and JAMstack compared to traditional
approaches over the past 10 years. The data is based on research and surveys
conducted among developers and companies.

As you can see from the chart, WebAssembly usage has been growing rapidly
since 2017, when the technology was officially supported by major browsers.
Serverless architecture has also shown steady growth, especially since 2018, when
major cloud providers began actively promoting their solutions. JAMstack, in turn, has
become a popular choice for developers since 2019, due to its simplicity and high
performance. Traditional approaches such as monolithic architectures and manual
server management are gradually losing popularity, giving way to more modern and
efficient solutions.

Conclusion
Current trends in web development demonstrate that the industry continues to

evolve, offering new approaches and technologies for creating websites.
Simplification of development with frameworks, the transition to serverless
architecture and an emphasis on performance have become key factors determining
the future of web development. These changes not only simplify the process of

SCIENCE TIME

41

creating websites, but also improve the quality of the final product, which meets the
growing expectations of users. In the future, we can expect further development of
technologies such as WebAssembly, serverless and JAMstack, as well as the
emergence of new tools and approaches that will continue to change the landscape of
web development.

Fig. 1 New Technologies Usage Growth Chart in Web Development

References:

1. Richardson, L. (2020). "Microservices Patterns".
2. Fowler, M. (2019). "Serverless Architectures".
3. Hevery, M. (2021). "The Rise of JavaScript Frameworks".
4. Google Developers. (2021). "Web Vitals: Essential Metrics for a Healthy

Site".
5. Smashing Magazine. (2021). "The JAMstack Revolution: Modern Web

Development".
6. WebAssembly.org. (2021). "WebAssembly: A New Era for Web

Performance".

SCIENCE TIME

42

